skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhao, Zehua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In this paper, we prove Strichartz estimates for many body Schrödinger equations in the periodic setting, specifically on tori 𝕋 d {\mathbb{T}^{d}}, where d 3 {d\geq 3}. The results hold for both rational and irrational tori, and for small interacting potentials in a certain sense. Our work is based on the standard Strichartz estimate for Schrödinger operators on periodic domains, as developed in [J. Bourgain and C. Demeter,The proof of the l 2 l^{2}decoupling conjecture,Ann. of Math. (2) 182 2015, 1, 351–389]. As a comparison, this result can be regarded as a periodic analogue of [Y. Hong,Strichartz estimates forN-body Schrödinger operators with small potential interactions,Discrete Contin. Dyn. Syst. 37 2017, 10, 5355–5365] though we do not use the same perturbation method. We also note that the perturbation method fails due to the derivative loss property of the periodic Strichartz estimate. 
    more » « less